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Abstract
In this paper we show how the results of quasi-stationary perturbation theory
relate to those based upon squared eigenfunction expansions. We show that the
two give the same results for a quasi-stationary approximation and also show
how standard adiabatic perturbation theory connects to the quasi-stationary
theory.

PACS numbers: 05.45.Yv, 02.30.Jr, 02.30.Mv

1. Introduction

Over the past several decades there has been a growth in the study of integrable and near
integrable systems. One of the first generic integrable nonlinear partial differential equations
was the Korteweg–deVries equation (KdV), which was derived in 1895 [20] as the equation
governing small amplitude water waves exhibiting quadratic nonlinearity and third-order
dispersion. Around the sixties, this equation once again arose in other areas and it was shown
to be integrable, possessing soliton solutions and an infinite number of conservation laws
[2, 25]. A whole industry was born in which over 100 other integrable systems were found in
1D and higher spatial dimensions. Also, a variety of methods have been extended for studying
integrability, such as symmetry, Bäcklund and Painlevé methods.

However, it was not long before people were interested in the robustness of solitons. Most
of these integrable systems were derived as approximate models of processes in the real world.
What if the assumptions were relaxed? Would the soliton survive? How long would it survive?
For the KdV equation, the integrable system used in this paper, some of the first perturbation
results appeared in Ott and Sudan’s 1969 paper [26]. Karpman and Maslov [10–12] and
Kaup and Newell [15] presented results based upon the inverse scattering method. One of
the first textbook accounts of soliton perturbation theory was in Lamb’s book [21]. Menyuk
[24] presented results in 1986 using direct methods for studying Hamiltonian perturbations.
Herman wrote several papers on a direct method, based upon squared eigenfunction expansions
[4–6]. In more recent years, a few other authors have also addressed direct KdV perturbations
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using either eigenfunction expansions [29, 30] or Green’s function methods [23]. There
were several other papers on soliton perturbation methods in the early years of soliton research
dealing with other near integrable systems. An exhaustive discussion was provided by Kivshar
and Malomed in 1989 [17]. Of special interest is the 1981 paper by Kodama and Ablowitz
[19] in which they present a direct method using a quasi-stationary approximation.

While many of the perturbation methods have seen obvious connections, it was not entirely
clear to the author that the quasi-stationary results in Kodama and Ablowitz [19] had any direct
connection to those of others, such as Herman [6] or Yan and Tang [29]. In this paper we
will address this problem and show how these seemingly different approaches are connected.
We will state this problem more formally in the next section after setting up the perturbation
problem.

2. The perturbation problem

We are interested in finding an approximate solution of the perturbed KdV equation

uT + 6uux + uxxx = εR[u] (1)

which is close to the KdV soliton, u0(z) = 2η2 sech2 z, z = η(x − ξ), where ξT = 4η2. Note
that throughout this paper we use standard variable subscript notation to denote differentiation,
e.g., ux = ∂u

∂x
.

The now standard procedure is to use multiple time scales and to introduce an expansion
of u(x, T ). We will pick a slow time τ and fast time t scale, such that

∂T = ∂t + ε∂τ . (2)

We expand u(x, T ) as

u(x, T ) = u0(z, τ ) + εu1(z, t, τ ) + · · · . (3)

Inserting these expansions in equation (1), we find that u0(z) satisfies the KdV equation
provided ξt = 4η2 and u1(z, t) satisfies the forced, linearized KdV equation

u1t + η3L̂u1 = R1 − 4ηητφ1(z) − 4η3ξτφ2(z) ≡ F(z). (4)

Here we have defined R1 ≡ R[u0] and

φ1(z) = (1 − z tanh z) sech2 z

φ2(z) = sech2 z tanh z.
(5)

The linear operator L̂ is given by

L̂ = d3

dz3
+ (12 sech2 z − 4)

d

dz
− 24 sech2 z tanh z. (6)

We can now state our problems in more detail. We want to solve equation (4) for u1 and
to determine the slow time behaviour of the soliton parameters η(τ) and ξ(τ ). This will give
us the amplitude and velocity correction, respectively, of the perturbed soliton. Our goal is to
compare the results from the squared eigenfunction expansion, following Yan and Tang [29],
to those of the quasi-stationary method of Kodama and Ablowitz [19].

The main assumption of the quasi-stationary method is that u1 does not depend explicitly
upon the fast time scale, t. Thus, we are interested in studying the solution u1 = u1(z) of

η3L̂u1 = R1 − 4ηητφ1(z) − 4η3ξτφ2(z). (7)

We will apply our methods to the damped KdV equation

ut + 6uux + uxxx = −εγ u. (8)
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We show that the solution obtained by the squared eigenfunction method agrees with the
results of Kodama and Ablowitz up to solutions of the homogeneous equation L̂u1 = 0. We
will further show how this solution is related to the non-quasistationary problem of adiabatic
soliton perturbation theory based upon the direct perturbation method as presented by Yan
and Tang [29], which is typical of the direct methods. The damped KdV equation is one of
the most used test models and arises, for example, in the study of a solitary surface wave in
the ocean as it approaches a beach with bottom topography having a constant nonzero slope
[8, 9, 18, 22].

3. Quasi-stationary solution—direct integration

We first recall the solution of the quasi-stationary problem by direct integration, similar to
the method in Kodama and Ablowitz [19]. We begin with the linearized KdV problem from
equation (7) in the form

η3

[
d3

dz3
+ (12 sech2 z − 4)

d

dz
− 24 sech2 z tanh z

]
u1 = F(z) (9)

where F(z) = R1 − 4ηητφ1(z) − 4η3ξτφ2(z).
Setting y = tanh(z), g(y) = u1(z) and F̃ (y) = F(z), we obtain

η3Lg(y) = F̃ (y) (10)

where

L = (1 − y2)
d

dy
(1 − y2)

d

dy
(1 − y2)

d

dy
+ [12(1 − y2) − 4](1 − y2)

d

dy
− 24(1 − y2)y.

(11)

This is L̂ written in the new variable y.
With a little rearranging, this third-order differential equation can be rewritten as

η3(1 − y2)
d

dy

[
(1 − y2)

[
d

dy
(1 − y2)

dg

dy
+

(
12 − 4

1 − y2

)
g

]]
= F̃ (y). (12)

Dividing by η3(1 − y2) and integrating, one obtains the second-order differential equation

d

dy

(
(1 − y2)

dg

dy

)
+

(
12 − 4

1 − y2

)
g = 1

1 − y2

∫
F̃ (y)

η3(1 − y2)
dy. (13)

Following Kodama and Ablowitz, we recognize that the associated Legendre polynomial,
P 2

3 (y) = 15y(1 − y2), is a solution of the homogeneous equation. Thus, one can
solve this second-order problem using the method of variation of parameters. We let
g(y) = A(y)P 2

3 (y) = 15y(1 − y2)A(y). This yields an equation for A(y):

15y(1 − y2)2

[
d2A

dy2
+

2(1 − 4y2)

y(1 − y2)

dA

dy

]
= F(y) (14)

where we have defined

F(y) ≡ 1

1 − y2

∫
F̃ (y)

η3(1 − y2)
dy. (15)

Using the integrating factor y2(1 − y2)3, we find

15
d

dy

[
y2(1 − y2)3 dA

dy

]
= y(1 − y2)F(y). (16)
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This first-order equation can be solved for A(y):

A(y) =
∫ y

dx
1

x2(1 − x2)3

∫ x

dw
1

15
w(1 − w2)F(w). (17)

Inserting F(y) from equation (15) and noting that u1(z) = g(y), we obtain the general
solution to equation (9) as

u1(z) =
[
y(1 − y2)

η3

∫ y

dx
1

x2(1 − x2)3

∫ x

dww

∫ w

ds
F̃ (s)

1 − s2

]
y=tanh z

. (18)

This result will be later applied to the damped KdV equation (8) for which

F̃ (y) = −2η(1 − y2)

(
ηγ + 2ητ − ητ ln

(
1 + y

1 − y

)
y + 2η2ξτ y

)
. (19)

We will first turn to the direct perturbation method using squared eigenfunction expansions,
which has generally only been applied to non-quasistationary problems.

4. The eigenfunction expansion method

As noted in the introduction, there have been several approaches to solving the perturbed
KdV equation (1). These methods range from using perturbations of the scattering data in the
inverse spectral method (transform) [10–12, 15] to using Green’s function methods [16, 23], to
doing a direct perturbation using squared eigenfunction expansions [6, 13, 14, 27, 29]. These
methods have been shown to be equivalent [23, 29]. We will borrow the method and notation
of the recent paper of Yan and Tang [29]. In this section we will review the eigenfunction
expansion method and in the next section show how it can be applied to the quasi-stationary
equation (7). In this way we can make the connection between the early results of Kodama
and Ablowitz [19] and these other perturbation studies, which is the goal of this paper.

In short, we have a linear partial differential equation (4) we wish to solve for u1(z, t).
We obtain a solution to this problem as a sum over the eigenfunctions of the operator L̂. These
eigenfunctions consist of continuous and bound states and are related to the squares of the
eigenfunctions of the so-called Lax pair, which is used in the study of the integrability of
nonlinear evolution equations and in the development of the inverse scattering transform (IST)
[2, 25]. Some authors have found ways to get around IST [23], but it amounts to the same set
of eigenfunctions used in an eigenfunction expansion of the Green’s function. In fact, one can
even relate this basis to a set of squared associated Legendre functions in the case of the KdV
equation, as shown in appendix B.

4.1. Solution of Non-quasistationary problems

We seek the eigenfunctions φ(z, k) and their adjoints ψ(z, k) that can be used in the
perturbation expansion. We recall the linear operator L̂ and its adjoint L̂†:

L̂ = d3

dz3
+ (12 sech2 z − 4)

d

dz
− 24 sech2 z tanh z. (20)

L̂† = d3

dz3
+ (12 sech2z − 4)

d

dz
. (21)

The eigenfunctions of these operators satisfy the eigenvalue problems

L̂φ = λφ λ = −ik(k2 + 4)

L̂†ψ = λ′ψ λ′ = ik(k2 + 4).
(22)



Quasi-stationary KdV soliton 4757

These problems have both continuous and bound eigenstates. The continuous states are

φ(z, k) = 1√
2πk(k2 + 4)

[k(k2 + 4) + 4i(k2 + 2) tanh z − 8k tanh2 z − 8i tanh3 z] eikz

ψ(z, k) = 1√
2π(k2 + 4)

[k2 − 4ik tanh z − 4 tanh2 z] e−ikz.

(23)

The bound, or discrete, states are given by

φ1(z) = (1 − z tanh z) sech2 z φ2(z) = sech2 z tanh z

ψ1(z) = sech2 z ψ2(z) = tanh z + z sech2 z.
(24)

We note that L̂φ1 = −8φ2 and L̂φ2 = 0.
Yan and Tang [29] provided the needed properties of these eigenfunctions. These states

satisfy the orthogonality conditions∫ ∞

−∞
φ(z, k)ψ(z, k′) dz = δ(k − k′)

∫ ∞

−∞
φj (z)ψ�(z) dz = δj,� j, k = 1, 2.

(25)

The completeness relation can be written as

P

∫ ∞

−∞
φ(z, k)ψ(z′, k) dk +

2∑
j=1

φj (z)ψj (z
′) = δ(z − z′). (26)

Here P denotes the Cauchy principal value [1, 3] since these integrals not only have infinite
limits, but also involve a pole at k = 0 on the real axis.

We can now construct the solution u1(z, t) using this basis. We expand the forcing term
in equation (4) as

F(z) = P

∫ ∞

−∞
f (k)φ(z, k) dk +

2∑
j=1

fjφj (z). (27)

Using the orthogonality conditions, the expansion coefficients are found using

f (k) =
∫ ∞

−∞
F(z)ψ(z, k) dz =

∫ ∞

−∞
R[u0(z)]ψ(z, k) dz

fj =
∫ ∞

−∞
F(z)ψj (z) dz =

∫ ∞

−∞
R[u0(z)]ψj(z) dz j = 1, 2.

(28)

Note that in general F = F(z, t) and its expansion coefficients may have an explicit fast time
dependence. However, for the example in this paper such a time dependence is not needed.

We can also expand u1(z, t) in the basis as

u1(z, t) = P

∫ ∞

−∞
U(t, k)φ(z, k) dk +

2∑
j=1

Uj(t)φj (z). (29)

Inserting this expansion in equation (4), u1t + η3L̂u1 = F , we find that the coefficients satisfy
the equations

Ut + η3λ(k)U = f (k) U(0, k) = 0

U1t = f1 U1(0) = 0
U2t − 8η3U1 = f2 U2(0) = 0.

(30)
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In principle, we have solved the forced, linearized KdV equation after solving these
simple first-order ordinary differential equations. However, solutions of the Ui equations
may lead to solution growth in time, or secularities. This can force the secularity conditions
fi ≡ 0, i = 1, 2. These typically will give information about the first-order effects of the
perturbation on the soliton amplitude and speed. Next we will show how the assumption of
quasistationarity changes the system in (30) .

4.2. Solution of quasi-stationary problem

We are interested in seeing how the solution from direct integration in the last section is related
to that obtained from an expansion in the squared eigenfunction basis. We have found that the
expansion coefficients in the non-quasistationary problem satisfy a set of ordinary differential
equations (30). However, the time derivative is with respect to the fast time scale. For the
quasi-stationary problem there is no fast time scale. So, we need to redo the perturbation
expansion method with this in mind for equation (7). Proceeding as before, we have

u1(z) = P

∫ ∞

−∞
U(k)φ(z, k) dk + U1φ1(z) + U2φ2(z). (31)

Then

L̂u1 = P

∫ ∞

−∞
U(k)[−ik(k2 + 4)]φ(z, k) dk − 8U1φ2(z). (32)

Expanding F(z), as before,

F(z) = P

∫ ∞

−∞
f (k)φ(z, k) dk + f1φ1(z) + f2φ2(z) (33)

we can equate the coefficients to obtain

U(k)η3[−ik(k2 + 4)] = f (k) =
∫ ∞

−∞
F(z)ψ(z, k) dz (34)

0 = f1 =
∫ ∞

−∞
F(z) sech2 z dz (35)

−8η3U1 = f2 =
∫ ∞

−∞
F(z)[tanh z + z sech2 z] dz. (36)

In this case, there is no growth in time. However, we see that there is a solvability
condition, f1 ≡ 0 from (34). Thus, we do recover one of our previous secularity conditions
automatically. Of course, this is not unexpected, since v = sech2 z is a solution of the adjoint
problem L̂†v = 0, where L̂† was defined in (21).

This completes the general solution of the quasi-stationary problem using the
eigenfunction expansion method. We are now ready to apply our solution to a particular
perturbation and then compare this solution to that obtained directly in section 3.

5. Application to the damped KdV equation

In this section we will apply the previous general results to the damped KdV equation (8)
in order to see the connection between the two methods considered in this paper. We start
by comparing the quasi-stationary results from both methods. We will then compare the
quasi-stationary result with the standard result from adiabatic perturbation theory.
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5.1. Quasi-stationary solution: direct method

We first evaluate the solution in equation (18), using F̃ (z) from equation (19). We note that the
proper solution of the adjoint problem, L̂u = 0, is u0 = 2η2 sech2 z. Thus, the compatibility
condition that we have seen in earlier sections is given by∫ ∞

−∞
F(z) sech2 z dz = 0 (37)

where F(z) = R[u0] − 4ηητφ1(z) − 4η3ξτφ2(z). For the damped KdV equation we set
R[u0] = −γ u0(z). This leads to

ητ = − 2
3ηγ. (38)

So, the forced, linearized problem takes the form

η3L̂u1 = 2
3γ η2 sech2 z(1 − 4z tanh z) − 4η3ξτ sech2 z tanh z. (39)

Using this forcing term in the general solution (18), we find that

u1(z) = γ

6η

[
−1 + tanh z + 3

(
1 +

η

γ
ξτ

)
(1 − z tanh z) sech2 z

+ z(2 − z tanh z) sech2 z

]
−

(
5γ

12η
+

1

2
ξτ

)
sech2 z tanh z. (40)

There are extra terms that are proportional to one of the solutions of the homogeneous
problem. In particular, the general solution to L̂v(z) = 0 is

v(z) = c1 cosh2 z + c2 sech2 z tanh z + c3[−1 + 3(1 − z tanh z) sech2 z]. (41)

However the first term leads to an unbounded solution for large z, so we can set c1 = 0. Now
the above solution can be rewritten in the general form

u1(z) = γ

6η
[tanh z + z(2 − z tanh z) sech2 z] +

1

2
ξτ (1 − z tanh z) sech2 z

+ C1 sech2 z tanh z + C2(−1 + 3(1 − z tanh z) sech2 z) (42)

where C1 and C2 are arbitrary functions independent of z. Inserting this solution into η3L̂u

yields

η3L̂u1 = 2
3γ η2 sech2 z(1 − 4z tanh z) − 4η3ξτ sech2 z tanh z (43)

confirming that this is a solution of the linearized problem in equation (39).

5.2. Quasi-stationary solution: eigenfunction method

In order to compare the previous solution to the eigenfunction expansion solution (29), we
need to compute the inner products in (34). We first obtain for the expansion coefficients
of F(z)

f (k) =
√

2π

3

γ η2k

sinh
(

πk
2

) (44)

f1 = −8

3
γ η2 − 4ηητ (45)

f2 = −4η3ξτ . (46)

For f1 = 0, we get the standard η-dependence as given in equation (38).
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The harder part of this computation is the evaluation of the sum over the continuous states:

I = P

∫ ∞

−∞
U(k)φ(z, k) dk. (47)

Solving for U(k) in (34) in terms of f (k) in (44), we have

U(k) = −
√

2π

3iηγ

1

(k2 + 4) sinh
(

πk
2

) . (48)

Combining this expression with φ(z, k) in equation (23) yields the integral

I = iγ

3η
P

∫ ∞

−∞

k(k2 + 4) + 4i(k2 + 2) tanh z − 8k tanh2 z − 8i tanh3 z

k(k2 + 4)2 sinh
(

πk
2

) eikz dk. (49)

The computation of this contour integral is treated in appendix A. The result is

I = γ

6η

[
−

(
π2

12
+ z2 +

3

2

)
sech2 z tanh z + tanh z + 2z sech2 z

]
. (50)

The full solution of the quasi-stationary problem using the eigenfunction expansion
method can now be found. We insert (50) and U2 = 0 into the solution (31) and absorb
any terms proportional to sech2 z tanh z. This gives the solution

u1 = γ

6η
[tanh z + z(2 − z tanh z) sech2 z] +

1

2
ξτ (1 − z tanh z) sech2 z + C̃ sech2 z tanh z. (51)

We note that insertion into the linear operator η3L̂u yields

η3L̂u1 = 2
3γ η2 sech2 z(1 − 4z tanh z) − 4η3ξτ sech2 z tanh z. (52)

Therefore, our solution is a solution of the linearized equation (39).

6. Results and discussion

We have considered the perturbation of the KdV equation under the assumption of quasi-
stationarity. For the damped KdV equation, this amounts to solving the equation

η3L̂u1 = 2
3γ η2 sech2 z(1 − 4z tanh z) − 4η3ξτ sech2 z tanh z (53)

where

L̂ = d3

dz3
+ (12 sech2 z − 4)

d

dz
− 24 sech2 z tanh z. (54)

Using direct integration methods, we obtained (42),

u1(z) = γ

6η
[tanh z + z(2 − z tanh z) sech2 z] +

1

2
ξτ (1 − z tanh z) sech2 z

+ C1 sech2 z tanh z + C2(−1 + 3(1 − z tanh z) sech2 z). (55)

Using an eigenfunction expansion method, we obtained (51),

u1 = γ

6η
[tanh z + z(2 − z tanh z) sech2 z] +

1

2
ξτ (1 − z tanh z) sech2 z + C̃ sech2 z tanh z. (56)

In both cases we have found that the same compatibility condition is needed, which leads to
the time dependence ητ = − 2

3ηγ .
However, we see that these solutions differ by a solution of the homogeneous equation,

v(z) ≡ −1 + 3(1 − z tanh z) sech2 z. This term did not appear in the general theory for the
eigenfunction expansion method. Since the homogeneous problem is a third-order ordinary
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differential equation, one would expect another arbitrary term. In fact, it can be shown that
this missing term arises from the k = 0 contribution to the integral over the continuous states.

We can write v(z) = −1 + 3(1 − z tanh z) sech2 z = −1 + 3φ1(z). We seek an
expansion of v(z) in terms of the basis to see where it arises in the theory. Using our basis of
eigenfunctions, we find that

1 = P

∫ ∞

−∞
h(k)φ(z, k) dk + 2φ1(z) (57)

where h(k) = k2−4
k2+4

δ(k)√
π

. Thus, v(z) has the expansion

v(z) = −P

∫ ∞

−∞
h(k)φ(z, k) dk + φ1(z). (58)

A computation of the integral yields the correct form for v(z). Therefore, the k = 0 pole
contributes to this particular solution of the homogeneous problem, L̂v = 0, accounting for
the missing term.

We now compare our general solution to that of Kodama and Ablowitz [19]. They gave
the solution for u1(z) as

u1(z) = γ

6η

[
−1 + tanh z + 3

(
1 +

η

γ
ξτ

)
(1 − z tanh z) sech2 z + z(2 − z tanh z) sech2 z

]
.

(59)

This agrees with the first solution (42) up to terms proportional to sech2 z tanh z. In fact, this
u1(z) can be rewritten as

u1(z) = γ

6η
[tanh z + z(2 − z tanh z) sech2 z] +

1

2
ξτ (1 − z tanh z) sech2 z

+
γ

6η
(−1 + 3(1 − z tanh z) sech2 z) (60)

showing that the extra term is proportional to v(z) above.
This leads to asking how one can absorb the arbitrary terms in the general solution (42).

We can require that u1(z) approaches 0 for large z. This yields C2 = γ

6η
. Inserting this value

into (42) gives the same factor in Kodama and Ablowitz’s solution as given by equation (60).
Higher order derivatives automatically vanish asymptotically.

One can absorb the C1 term into the leading order solution by picking the correct phase
constant when solving for the slow time dependence for ξ , which still needs to be handled. In
non-quasistationary perturbation theory this is done through the secularity conditions.

So far we have one common secularity, or compatibility, condition. In both problems we
arrived at the condition∫ ∞

−∞
F(z) sech2 z dz = 0. (61)

However, in the non-quasistationary perturbation theory, there is a second condition, which
gives the correction to the soliton velocity [4]∫ ∞

−∞
F(z)[tanh z + z sech2 z + tanh2 z] dz = 0. (62)

This is considered in the quasi-stationary problem by Kodama and Ablowitz [19] through the
use of conservation of energy. Namely, from the damped KdV equation, one has that

d

dt

∫ ∞

−∞
u2 dx = −2εγ

∫ ∞

−∞
u2 dx. (63)
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Figure 1. This is a scaled plot of the first-order solution u1(z) in equation (66).

Using this relation, Kodama and Ablowitz show that ξτ = − γ

3η
. This result agrees with

non-quasistationary perturbation theory. Similar results based upon conservation laws were
found by Herman [7]. Inserting this result in all three solutions leads to the same results
for u1(z).

One still has to account for the fact that there is a remaining arbitrariness in the solution
in the form of the unresolved sech2 z tanh z terms. Note that to order ε we have

u0(z) = 2η2 sech2(η(x − ξ + εx0))

≈ 2η2 sech2 z − 4εx0η
3 sech2 z tanh z. (64)

Integrating ξτ = − γ

3η
while using ητ = − 2

3ηγ , we have

ξ = ξ0 − 1
2 e2γ τ/3. (65)

Thus, we can pick C2 = −4x0η
3 in order to adjust the phase of the perturbed solution at τ = 0.

In summary, we can write the solution of the forced, linearized KdV equation under the
quasi-stationary assumption as

u1(z) = γ

6η
[−1 + tanh z + 2(1 − z tanh z) sech2 z + z(2 − z tanh z) sech2 z]. (66)

This form has resulted from using both direct and eigenfunction expansion methods. For
completeness, we can plot this solution up to the amplitude factor of γ

6η
as a function of z.

In figure 1 we plot u1(z). To see how it affects the full perturbed solution, we plot
u(z) = u0(z) + εu1(z) for ε = 0.01 and γ = 6η in figure 2. We note that Kodama and
Ablowitz [19] give the range of validity of u1 as |z| � ε−1/2. For ε = 0.01 this would give
|z| � 10. In figure 3 we zoom in to see the developing shelf behind the perturbed soliton.

Finally, we should compare the quasi-stationary results to the solution to the full non-
quasistationary problem. This is given in [29] as (using the secularity conditions to eliminate
any bound state terms!)

u1(z, t) = iγ

3η
P

∫ ∞

−∞

1 − eik(k2+4)η3t

k(k2 + 4)2 sinh
(

πk
2

)p(z, k) eikz dk (67)
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Figure 2. In this figure we plot u(z) = u0(z) + εu1(z) for ε = 0.01 and γ = 6η.
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Figure 3. In this figure we zoom into the previous plot of u(z) = u0(z) + εu1(z) for ε = 0.01 and
γ = 6η noting the shelf behind the perturbed soliton.

where

p(z, k) = k(k2 + 4) + 4i(k2 + 2) tanh z − 8k tanh2 z − 8i tanh3 z. (68)

This solution is also obtained from the analysis in section 4 by solving for U(k, t).
We note that the difference between this solution and the quasi-stationary solution (42)

is the absence of the explicit time dependence given by the exponential term. By replacing
t by t/ε and letting ε get small, this term leads to a rapid oscillation and leaves only the
quasi-stationary solution. An interpretation of the quasi-stationary approximation is that the
solution represents a long time t/ε behaviour when the time changes are a small correction to
the solution in a comoving system as represented by our use of z ≈ η(x − 4η2t). Moreover,
the time-dependent term in this solution accounts for the dispersive radiative terms, which
are not accounted for in the quasi-stationary solution. Kodama and Ablowitz show how these
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can be obtained by solving a linearized KdV equation outside the region of validity for the
quasi-stationary solution and using matched asymptotic expansions.

7. Conclusion

We have compared several methods for solving the perturbed KdV equation. The goal of this
paper was to connect the direct integration of the quasi-stationary perturbation presented by
Kodama and Ablowitz [19] to the now standard direct method using eigenfunction expansions
[29]. We have found that these methods typically agree up to solutions of the homogeneous
linearized KdV equation under the assumption of quasi-stationarity. Using appropriate
boundary conditions and adjusting the initial phase, we have determined that the first-order
correction agrees with that of Kodama and Ablowitz:

u1(z) = γ

6η
[−1 + tanh z + 2(1 − z tanh z) sech2 z + z(2 − z tanh z) sech2 z]. (69)

As it was not in our interest to explore these solutions in detail, we have not discussed
some of the known results, such as the shape of the shelf that develops behind the perturbed
soliton and the range of validity of the linearized solution, |z| � ε−1/2. Kodama and Ablowitz
use matched asymptotic expansions in order to obtain a uniform solution outside the region
of validity of the quasi-stationary solution in order to ascertain the shelf and emitted linear
dispersive waves. Yan and Tang look at the large z behaviour and obtain similar results by
studying the asymptotics of the integral over the continuous states.

Appendix A. Evaluation of integral (49)

In this appendix we discuss the computation of the integral

I = iγ

3η
P

∫ ∞

−∞

k(k2 + 4) + 4i(k2 + 2) tanh z − 8k tanh2 z − 8i tanh3 z

k(k2 + 4)2 sinh
(

πk
2

) eikz dk. (A.1)

This can be carried out by considering the evaluation of the following integrals:

I1 = P

∫ ∞

−∞

eikz

(k2 + 4) sinh
(

πk
2

) dk. (A.2)

I2 = P

∫ ∞

−∞

eikz

k(k2 + 4) sinh
(

πk
2

) dk. (A.3)

I3 = P

∫ ∞

−∞

eikz

(k2 + 4)2 sinh
(

πk
2

) dk. (A.4)

I4 = P

∫ ∞

−∞

eikz

k(k2 + 4)2 sinh
(

πk
2

) dk. (A.5)

Then the full solution would be given by

I = iγ

3η
[I1 + 4i(I2 − 2I4) tanh z − 8I3 tanh2 z − 8iI4 tanh3 z] (A.6)

where each integral can be evaluated using complex contour integral methods.
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Figure 4. This is the contour needed to perform the Cauchy principal value integrals for z > 0
[1, 3]. A similar contour in the lower half complex plane can be used for z < 0.

For z > 0, we consider the contour given in figure 4. We close the contour in the upper
half plane and go around the k = 0 pole with a semicircle of radius ε and then let ε approach
zero. The form of the integration result is given by (m = 1, 2, 3, 4)

Im = 2π i
∞∑

n=1

Res[fm(kn); kn = 2in] + π i Res[fm(k); k = 0]. (A.7)

For the above integrals, we identify the fm as

f1 = eikz

(k2 + 4) sinh
(

πk
2

) (A.8)

f2 = eikz

k(k2 + 4) sinh
(

πk
2

) (A.9)

f3 = eikz

(k2 + 4)2 sinh
(

πk
2

) (A.10)

f4 = eikz

k(k2 + 4)2 sinh
(

πk
2

) (A.11)

and we find that

I1 = i

2
− i

4
(4z + 1) e−2z − i

∞∑
n=2

(−1)n

n2 − 1
e−2nz (A.12)

I2 = − z

2
− 1

8
(4z + 3) e−2z − 1

4

∞∑
n=2

(−1)n

n(n2 − 1)
e−2nz (A.13)

I3 = i

8
− i

192
(24z2 + 24z + 2π2 + 9) e−2z +

i

4

∞∑
n=2

(−1)n

(n2 − 1)2
e−2nz (A.14)

I4 = − z

8
− 1

384
(24z2 + 48z + 2π2 + 33) e−2z +

1

8

∞∑
n=2

(−1)n

n(n2 − 1)2
e−2nz. (A.15)

Each infinite series can be summed in terms of known functions using partial fraction
decomposition and the series summations [28]
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∞∑
n=1

(−1)n e−2nz

n
= ln(1 + e−2z) (A.16)

∞∑
n=1

(−1)n e−2nz

n2
= Li2(e

−2z) ≡
∫ e−2z

0

ln(1 + x)

x
dx. (A.17)

Inserting the computed integrals into equation (A.6) we obtain the result shown in
equation (50).

For z < 0, the above integrals can be computed by following a contour in the lower half
complex k-plane and going around the k = 0 pole. The results are

I1 = i

2
+

i

4
(4z − 1) e2z − i

∞∑
n=2

(−1)n

n2 − 1
e2nz (A.18)

I2 = − z

2
− 1

8
(4z − 3) e2z +

1

4

∞∑
n=2

(−1)n

n(n2 − 1)
e2nz (A.19)

I3 = i

8
− i

192
(24z2 − 24z + 2π2 + 9) e2z +

i

4

∞∑
n=2

(−1)n

(n2 − 1)2
e2nz (A.20)

I4 = − z

8
− 1

384
(24z2 − 48z + 2π2 + 33) e2z − 1

8

∞∑
n=2

(−1)n

n(n2 − 1)2
e2nz. (A.21)

Inserting these computed integrals into equation (A.6), we once again obtain the result
shown in equation (50).

Appendix B. Relation to squared associated Legendre functions

Several authors have noted that one does not need the full power of the IST to find the
eigenfunction basis or Green’s functions needed to solve the linearized problem [23]. For the
KdV problem, one can show that the basis and its adjoint basis can be written in terms of
associated Legendre functions. Letting P

µ

1 ≡ P
µ

1 (tanh z), we can show that

L̂†(P µ

1

)2 = 8µ(µ2 − 1)
(
P

µ

1

)2
(B.1)

L̂
d

dz

(
P

µ

1

)2 = 8µ(µ2 − 1)
d

dz

(
P

µ

1

)2
. (B.2)

In fact, one can write the squared functions in terms of the unsquared ones
(
P

µ
n =

P
µ
n (tanh z)

)
:

(
P

µ

1

)2 = tanh2 z − 2µ tanh z + µ2

4(2 − µ)2
e2µz = A

[
1

6
(µ + 1)P

2µ

0 − 1

3
(2µ − 1)P

2µ

2

]

d

dz

(
P

µ

1

)2 = µ(µ2 − 1) + (1 − 2µ2) tanh z + 2µ tanh2 z − tanh3 z

2(2 − µ)2
e2µz

= A

[
1

3
µ(µ + 1)P

2µ

0 − 2

5
(2µ2 + µ − 1)P

2µ

1 − 2

15
(4µ2 − 8µ + 3)P

2µ

3

]
(B.3)

where

A = (1 − 2µ)

(1 − µ)(2 − µ)
.
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Finally, the Yan and Tang [29] eigenfunctions (which are related to those in [6]) are related
as

√
2πk(4 + k2)ψ(z, k) = −16

(
2 +

k2

4

)2 [
P

−ik/2
1 (tanh z)

]2

√
2π ik(4 + k2)φ(z, k) = −16

(
2 +

k2

4

)2
d

dz

[
P

ik/2
1 (tanh z)

]2
.

It would be interesting to see how these are related to the quasi-stationary problem, where
we had used the method of variation of parameters in which the homogeneous solution is
P 3

2 (tanh z). There might also be a connection of associated Legendre functions to perturbation
bases for other near integrable systems. These connections are left for a later paper.
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